استفاده از روش های هوشمند فازی- عصبی و شبکه های عصبی چند لایه در تشخیص عیوب اصلی ماشین های دوار
Authors
abstract
امروزه عیبیابی ماشینهای دوار از راه تشخیص علائم شروع و رشد عیب با استفاده از روش های هوشمند، شناسایی علت و قطعات آسیب دیده و پیشگویی میزان عمرکاری باقیماندة ماشین، نقش مهمی در جلوگیری از آسیبدیدگی شدید ماشین و هزینههای بالای تعمیرات بر عهده دارند. هدف این تحقیق نیز استفاده از ساختار هوشمند شبکههای فازی- عصبی و عصبی چند لایه در تشخیص عیوب اصلی ماشینهای دوار از جمله نابالانسی، ناهمراستایی، خرابی بیرینگ و لقی مکانیکی است. لذا در این تحقیق علاوه بر ایجاد روشی خودکار برای تشخیص عیب، در جهت افزایش دقت و سرعت این شبکهها نیز تلاش شده است. در این راستا، با استفاده از روش تحلیل اجزای اصلی ابعاد ماتریس ورودی در حد مطلوب کاهش داده شد و نیز کارایی دو شبکه هوشمند فازی- عصبی و عصبی چند لایه، در تشخیص عیوب با یکدیگر مقایسه شد. جهت دستیابی به هدف فوق، شبکههای گفته شده با استفاده از بردارهای ویژگی و مشخصات استخراج شده از طیفهای فرکانسی و موجهای زمانی، آموزش دیده شدند. نتایج نشان داد که برای 84 مورد اندازهگیری نهایی، شبکههای فازی- عصبی و عصبی چند لایه به ترتیب دارای میانگین 91 و 78 درصد موفقیت در تشخیص درست عیوب بودند.
similar resources
استفاده از روشهای هوشمند فازی- عصبی و شبکههای عصبی چند لایه در تشخیص عیوب اصلی ماشینهای دوار
امروزه عیبیابی ماشینهای دوار از راه تشخیص علائم شروع و رشد عیب با استفاده از روش های هوشمند، شناسایی علت و قطعات آسیب دیده و پیشگویی میزان عمرکاری باقیماندة ماشین، نقش مهمی در جلوگیری از آسیبدیدگی شدید ماشین و هزینههای بالای تعمیرات بر عهده دارند. هدف این تحقیق نیز استفاده از ساختار هوشمند شبکههای فازی- عصبی و عصبی چند لایه در تشخیص عیوب اصلی ماشینهای دوار از جمله نابالانسی، ناهمراستایی،...
full textبازسازی دبی روزانه با استفاده از روش های شبکه عصبی و فازی- عصبی(مطالعه موردی: سرشاخه های حوزه آبخیز کارون)
برای برآورد دبی روزانه در مدلهای هیدرولوژی نیاز به دبیهای پیوسته در بازه زمانی روزانه هست. تعداد سالهای آماری متفاوت، نواقص آماری و خطای اندازهگیری باعث ایجاد سریهای زمانی با پایه زمانی غیرمشترک میگردد. بنابراین بازسازی دادههای دبی روزانه از اهمیت ویژهای برخوردار است. این تحقیق بهمنظور بازسازی دبی روزانه در یکی از سرشاخههای رودخانه کارون و در دو مرحله انجام گرفت. در هر دو مرحله تحقیق ...
full textمدلسازی لوله های انتقال گاز با شبکه های عصبی مصنوعی به منظور تشخیص عیوب آنها
این مقاله معرفی رویکرد جدید برای عیب یابی خطوط لوله انتقال گاز با استفاده از شبکه عصبی مصنوعی به کمک امواج مکانیکی است که این روش بسیار ارزان تر و آسان تر از روش اولتراسوند است. که در حال حاضر مشغول به کارمی باشد. این خطوط معمولا در شرایط محیطی سخت و دور از دسترس و در مسافت های طولانی قرار دارند و استفاده از سیستم های که بصورت آنی و دقیق بتوانند عیب ها و نشتی های این لوله را گزارش دهند حیاتی ...
full textطراحی یک سیستم هوشمند مبتنی بر شبکه های عصبی و ویولت برای تشخیص آریتمی های قلبی
In this paper, Automatic electrocardiogram (ECG) arrhythmias classification is essential to timely diagnosis of dangerous electromechanical behaviors and conditions of the heart. In this paper, a new method for ECG arrhythmias classification using wavelet transform (WT) and neural networks (NN) is proposed. Here, we have used a discrete wavelet transform (DWT) for processing ECG recordings, and...
full textمهندسی شبکه های عصبی توسط اتوماتانهای یادگیر: تعیین اندازه مطلوب برای شبکه های عصبی سه لایه
هدف از مهندسی شبکه های عصبی بررسی معایب و مزایای شبکه های عصبی مصنوعی و ارایه روشهایی برای بهبود کارایی آنهاست. یکی از موضوعات مورد بحث در مهندسی شبکه های عصبی چند لایه، یافتن ساختار مناسب(نزدیک به بهینه) برای حل مسئله می باشد. معیار و نحوه انتخاب اندازه شبکه عصبی برای یک مسئله خاص هنوز شناخته شده نیست. در روشهای کلاسیک،طراح شبکه در ابتدای آموزش ساختاری را برای شبکه تعیین و سپس شبکه را آموزش می...
full textMy Resources
Save resource for easier access later
Journal title:
نشریه مهندسی مکانیک امیرکبیرPublisher: دانشگاه صنعتی امیرکبیر
ISSN 2008-6032
volume 45
issue 2 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023